About me

My photo
Liverpool, United Kingdom
I am interested in how we can use DNA sequences to understand biodiversity – how do we recognise species, and how are species related at taxonomic, ecological and geographic levels? My passion for biodiversity research has led me from the world’s largest natural history collection - Natural History Museum, London, where I completed my MSc, to the Biodiversity Institute of Ontario - global centre for the international Barcode of Life, as a PhD student, and to the hyper-diverse tropics of Southeast Asia. The tropics will be the first regions to experience historically unprecedented climates and this will happen within the next decade. Consequently my recent research has focussed on understanding the effects of urbanisation and climate change on tropical and subtropical biodiversity - encompassing both species richness and ecological integrity across a diversity of taxonomic groups.

Feb 15, 2011

Complete DNA barcode reference library for a country's butterfly fauna reveals high performance for temperate Europe


My colleagues from Spain recently published a paper detailing their completed barcode library of Romanian butterflies.

Complete DNA barcode reference library for a country's butterfly fauna reveals high performance for temperate Europe

Vlad Dincă, Evgeny V. Zakharov, Paul D. N. Hebert and Roger Vila

DNA barcoding aims to accelerate species identification and discovery, but performance tests have shown marked differences in identification success. As a consequence, there remains a great need for comprehensive studies which objectively test the method in groups with a solid taxonomic framework. This study focuses on the 180 species of butterflies in Romania, accounting for about one third of the European butterfly fauna. This country includes five eco-regions, the highest of any in the European Union, and is a good representative for temperate areas. Morphology and DNA barcodes of more than 1300 specimens were carefully studied and compared. Our results indicate that 90 per cent of the species form barcode clusters allowing their reliable identification. The remaining cases involve nine closely related species pairs, some whose taxonomic status is controversial or that hybridize regularly. Interestingly, DNA barcoding was found to be the most effective identification tool, outperforming external morphology, and being slightly better than male genitalia. Romania is now the first country to have a comprehensive DNA barcode reference database for butterflies. Similar barcoding efforts based on comprehensive sampling of specific geographical regions can act as functional modules that will foster the early application of DNA barcoding while a global system is under development.